United States Patent

US009465721B2

(12) 10) Patent No.: US 9,465,721 B2
Garrett et al. 45) Date of Patent: Oct. 11, 2016
(54) SNAPSHOTTING EXECUTING CODE WITH 6,836,881 B2* 12/2004 Beynon H047L1‘7‘/31/gg
A MODIFIABLE SNAPSHOT DEFINITION 6961924 B2 11/2005 Bates et al.
. . . . 7,058,928 B2* 6/2006 Wygodny et al. 717/128
(71) Applicant: Microsoft Technology Licensing, LLC, 7.076,767 Bl 7/2006 Williams
Redmond, WA (US) 7,240,335 B2 7/2007 Angel et al.
7,318,218 B2 1/2008 Aguilar, Jr. et al.
. I 7,343,588 B2 3/2008 Bates et al.
(72) Inventors: C[}l;ljlzs]])' G;rre(t;t, (\;Voodlnvﬂle, WA 7383338 B2 62008 Batos of al
(US); Alexander G. Gounares, 7,401,322 B1* 7/2008 Shagam et al. 717/128
Kirkland, WA (US) 7448,025 B2 11/2008 Kalafatis et al.
7464373 B1 12/2008 Yunt et al.
(73) Assignee: Microsoft Technology Licensing, LLC, 7/490,319 B2 2/2009 Blackwell et al.
Redmond, WA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. EP 2280348 A 2/2011
(21) Appl. No.: 13/970,302 OTHER PUBLICATIONS
(22) Filed: Aug. 19, 2013 Khoo, et al., “Expositor: Scriptable Time-Travel Debugging with
First-Class Traces”; 2013 IEEE; [retrieved on May 31, 2016];
(65) Prior Publication Data Retrieved from Internet <URL:http://dl.acm.org/ft_ gateway.
2id= . 361.%
US 2015/0052403 A1 Feb. 19, 2015 cfm?id=2486835>;pp. 352-361.%
(Continued)
(51) Imt.CL
GO6F 9/44 (2006.01) Primary Examiner — Xi D Chen
GOGF 11/36 (2006.01) (74) Attorney, Agent, or Firm — Ben Tabor; Raghu
(52) US. CL Chinagudabha; Micky Minhas
CPC ..o GO6F 11/366 (2013.01)
(58) Field of Classification Search (57 ABSTRACT
None o) A tracing and debugging system may take a snapshot of an
See application file for complete search history. application in response to an event, and may continue
. executing the program after the snapshot is captured. The
(56) References Cited

U.S. PATENT DOCUMENTS

snapshot may be stored and retrieved later in a debugging
tool where a programmer may browse the snapshot or the
snapshot may have some other analysis performed. The

6,016,474 A 1/2000 Kim et al. snapshot may contain a subset of the state of the application,
6,282,175 B1* 82001 Steele et al. 370/254 such as call stacks, portions of source code, the values of
g’gﬁ’gg‘l‘ g} 3;5883 f/{lexinctlier tet lal' local and global variables, and various metadata. The snap-
J721, orshed et al. - .
6,742,179 B2* 5/2004 Megiddo GO6F 8/4441 ?hOt may be defined i a snapshot configuration that may
717/130 include an event description and data to be collected.

6,754,889 Bl 6/2004 Leverenz

6,795,962 Bl 9/2004 Hanson 25 Claims, 10 Drawing Sheets

[T
APPL?gim :
PERFORMANCE CoDE eTon| CPONTER
SNAPRHOT MANAGER FUNCTION 3p4
306 FUNCTION |-w——

N W /
S] -
DEFINITIONS

318~

PERFORMANCE
MONITORING
WRAPPER

320
FUNCTION

322
CODE

sy

COMEINED PERFORMANCE
ND
SNAPSHOT GATHERING

’
! [sNAPSHOT 0{ WRAPPER|__]
, [EVALUATOR FUNCTION ‘,'\
314

PERFORMANCE
MONITORING
WRAPPER

316
FUNCTION

/’ PERFORMANCE

EXECUTION “ SNAPSHOT
INSTANCES

US 9,465,721 B2

Page 2
(56) References Cited 2012/0278793 Al* 11/2012 Jalan et al. 717/158
2013/0036403 Al* 2/2013 Geist 717/125
U.S. PATENT DOCUMENTS 2013/0227586 Al* 82013 Levineetal ... 718/106
2014/0019756 Al 1/2014 Krajec
7,536,680 B2 5/2009 Berry et al. 2014/0019985 Al* 1/2014 Kra]_ec
7,584,456 Bl 9/2009 Veenstra et al. 2014/0201720 Al 7/2014 Tessier GO6F 9/45545
7,627,728 Bl 12/2009 Roeck et al. . 717/130
7,681,181 B2 3/2010 Canning et al. 2014/0310679 Al* 10/2014 Bhattacharya GO6F 11/362
7,743,279 B2* 6/2010 Walker et al. ...c..cc..cooeoee 714/30 717/102
7,765,597 B2* 7/2010 Sima et al. ..covovvevvenene. 726/25 2015/0052400 Al 2/2015 Garrett et al.
7,788,644 B2 8/2010 Koduru et al. 2015/0052406 Al 2/2015 Garrett et al.
7,797,685 B2 9/2010 Agarwala et al. 2015/0347275 Al 12/2015 Garrett et al.
7,827,539 B1 11/2010 Wygodny et al.
7,895,409 B2* 2/2011 Mendonca G067Fl%/11/§(1) OTHER PUBLICATIONS
7,930,684 B2* 42011 Roeck GO6F ;}/7 2/(1);‘8 Jorwekar, et al., “Automating the Detection of Snapshot Isolation
8001520 B2* /2011 Babut oo GOG6F 11/36 Anomalies”; 2007 ACM,; [retrieved on May 31, 2016]; Retrieved
717131 from. Internet <URL:http://dl.acm.org/ft_ gateway.
8,032,868 B2 10/2011 Bates et al. cfm?id=1325995>;pp. 1263-1274.*
8,037,454 B2 10/2011 Bates et al. Nasr, A proposed paradigm for tracing the effect of security threats
8,074,207 B1* 12/2011 Reillyccoeveen. GOG6F 11/3476 in various mobile agent systems; 2015 IEEE;[retrieved on May 31,
717/130 2016]; Retrieved from Internet <URL:http:/iecexplore.ieee.org/
8,166,462 B2* 4/2012 Kosche et al. 717/130 stamp/stamp .jsp?tp=&arnumber=7176428>;pp. 1-8.*
8,286,036 B2* 10/2012 Mahajan et al. .. 714/57 Wang, et al., “Profiling Prgram and User Behaviors for Anomaly
8,312,435 B2* 11/2012 Wygodny et al. 717/130 Intrusion Dection Based on Non-negative Matrix Factorization”;
8,381,041 B2* 2/2013 Walker et al. 714/45 2004 IEEE; [retrieved on May 31, 2016]; Retrieved from Internet
8,402,318 B2* 3/2013 Nieh ... GOGF 11/3419 <URL:http://ieeexplore.icee.org/stamp/stamp.jsp?tp=
717/131 &arnumber=1428613>;pp. 99-104.*
8,543,991 B2* 9/2013 Ramaswamy GO6F 9/45516 International Search Authority, International Search Report and
717/120 Written Opinion, Korea Intellectual Property Office, PCT/US2014/
8,566,795 B2* 10/2013 DeWitt et al. 717/126 011932,
8,732,722 B2 5/2014 Swildens Wisniewski, et al., “Efficient, Unified, and Scalable Performance
8,776,026 B2 N 7/2014 Candea et al. Monitoring for Multiprocessor Operating Systems”, In Proceedings
g’gig’gg? E% N g; %8}3 Shannon etal ... G06F7(3; égg of the ACM/IEEE Conference on Supercomputing, Nov. 15, 2003,
s s WECHICY .ovvveeniieee 14 Pages,
8.830.201 B2 /2014 Schissel ot al 717/128 Phang, et al., “EXPOSITOR: Scriptable Time-Travel Debugging
1097, chissel et al. with First-Class Traces”, In Proceedings of the 35th International
8,881,115 B2* 11/2014 Bates GO6F;}/73/?§S Conference on Software Engineering (ICSE), May 18, 2013, pp.
352-361.
8,930,914 B2* 1/2015 Cohencovooev. GO6F ;}/73/?;3 Hummer, et al., “A Step-By-Step Debugging Technique to Facilitate
® . Mashup Development and Maintenance”, In Proceedings of the 3rd
8,935,673 Bl 1/2015 Ashkenazi GOGF 11/3636 4 4th 1 ional Worksh Web API 1 Servi
717/128 an nternational Workshop on We s and Services
8,049,791 B2 2/2015 Lu et al. Mashups, Dec. 1, 2010, 8 pages.
2002/0087950 Al 7/2002 Brodeur et al. Pollshchuk,_ et al., Dynan_nc”Heap Type _Inference for Program
2002/0174416 Al* 11/2002 Bates ... GOGF 11/3636 Xg‘\‘j{rss“;éd;ﬁi ;ncé%;b‘é%rglgg »In _PrOceedlI{‘%S "_flthe 3;";‘ Annual
717/128 (- ymposium on Principles of Program-
2003/0088854 Al* 5/2003 Wygodny et al. 717/130 ming Languages, Jan. 17, 2007, pp. 39-46.
2005/0102673 Al* 5/2005 DeWitt, Jr. GOG6F 11/3636 Cazzulani, Stefano, “Do more with Chrome Developer Tools”, The
717/128 Chromium Blog, Published on: Oct. 23, 2012. Avaialble at <<http://
2005/0149809 Al* 7/2005 Draeger et al. 714/746 blog.chromium.org/2012/10/do-more-with-chrome-developer-
2005/0273757 Al 12/2005 Anderson tools.html>>.
2006/0136582 AL* 6/2006 Mills ..ooovvvvviviiriirinnnn, 709/224 “Diagnosing memory problems in your webpages”, Published on:
2007/0005915 Al* 1/2007 Thompson et al. 711/162 Jun. 26, 2013. Available at <<http://msdn.microsoft.com/en-us/
2007/0006018 Al* 1/2007 Thompson et al. 714/6 library/ie/dn255003(v=vs.85).aspx>>
2007/0039049 Al* 2/2007 Kupferman GOG6F 11/3495 . ; e N .
Eargle, Chris, “Using the JustTrace Timeline”, Telerik Blogs. Pub-
726/22 ; ’ ’]) _
2007/0250820 Al* 10/2007 FEdwards GOG6F 11/3636 llSh_ed on: Feb. 28, 2013. AV_allable _at <<http:_//bl<_)gs.telerlk.conﬂ
717/131 chriseargle/posts/ 13-02-28/usmg-the-]usttrace-tlmehne.>>.
2008/0282087 Al 11/2008 Stollon et al. U.S. Appl. No. 13/970,319, Sep. 18, 2014, Office Action.
2010/0138811 Al* 6/2010 Jayaraman et al. 717/125 U.S. Appl. No. 13/970,319, Mar. 2, 2015, Notice of Allowance.
2010/0262954 Al* 10/2010 ROOS ..ovrvrvvvrrcrrnnee. GOGF 11/36 U.S. Appl. No. 13/970,343, Oct. 22, 2014, Office Action.
717/131 U.S. Appl. No. 13/970,343, Feb. 25, 2015, Office Action.
2012/0102488 Al* 4/2012 Wintergerst et al. 718/1
2012/0180057 Al* 7/2012 Levine et al. 718/102 * cited by examiner

U.S. Patent

116~

Oct. 11, 2016

SNAPSHOT

INSTANCES

| CALL STACK |
122~ 118

GLOBAL
VARIABLES

LOCAL

VARIABLES
120

Sheet 1 of 10

102~

SNAPSHOT
DEFINITION

EVENT
DESCRIPTION

106~

\-104

DATA
DEFINITION

130~

108

SNAPSHOT

US 9,465,721 B2

126~

SOURCE CODE
REPOSITORY

128~
| SOURCE CODE |

114
| APPLICATION |

110~

EXECUTION
ENVIRONMENT

MONITORING
AGENT

DEBUG VIEWER

o000

112~
DEBUGGING API

100
SYSTEM FOR

SNAPSHOT DEBUGGING

U.S. Patent Oct. 11, 2016 Sheet 2 of 10 US 9,465,721 B2

NETWORK
ENVIRONMENT WITH
SNAPSHOT DEBUGGING

200
SNAPSHQOT
STORAGE SYSTEM
SOURCE CODE 246

STORAGE SYSTEM

252
_ 256 SNAPSHOT
INSTANCE DATA
DEBUGGING 248
SY285'I;;EM SOURCE CODE [HARDWARE PLATFORM |
254
264~ | HARDWARE PLATFORM |
DECRYPTION
MODULE

PERFORMANCE
DATA
260~ 262 NETWORK oao
HARDWARE fa

[DEBUG VIEWER |

238

PLATFORM HARDWARE PLATFORM |
__________________________ 240
" 1 PERFORMANCE
| 232~ 234~ : STORAGE
I | SNAPSHOT || | ENCRYPTION | SYSTEM
| [DEFINITIONS MODULE |
| |
' [
: SNAPSHOT/ 236 ' bevice
| | MONITORING AGENT| | APPLICATION L UREES
| 222~ ~230 |
| EXECUTION
| | ENVIRONMENT LDEBUGGING AP L”224:
| 218~ |
| OPERATING
| SYSTEM | DEBUGGING APl N~220 |
B sttt |
206 :
SOFTWARE
214 |
COMPONENTS UsER_ | |
INTERFACE| ,
|
204" 216
HARDWARE NETWORK | |
PLATFORM INTERFACE]| |

U.S. Patent

Oct. 11, 2016

Sheet 3 of 10

US 9,465,721 B2

N —]
302« .
APPLICATION . EXECUTION
CODE
PERFORMANCE =ONCTION BOINTER
MONITOR WITH 304
SNAPSHOT MANAGER FUNCTION
306 FUNCTION |e—L
// _______________
V4
r 310~ 308~
'\ SNAPSHOT |[&—~[]wRAPPER]| !
. LEVALUATOR [N—¥| FUNCTION |~
N /
__ ____________ //

} 314
SNAPSHOT PERFORMANCE
DEFINITIONS MONITORING

WRAPPER
312f 318~ 316
PERFORMANCE
MONITORING FUNCTION
WRAPPER
320~ 326
FUNCTION
322~
PERFORMANCE
ShaoT

300
COMBINED PERFORMANCE
MONITORING AND
SNAPSHOT GATHERING

N

EXECUTION
ENGINE

SNAPSHOT
INSTANCES

FIG. 3

324~

U.S. Patent

Oct. 11, 2016

Sheet 4 of 10

US 9

,465,721 B2

PERFORMANCE
INDICATORS TIMELINE
406 4%4
|
000 \ / OO
PERF ORMANCE | (
SNAPSHOT
INDICATORS
408 e CALL
BUTTON 434~ 436 TIME 410 SELECTED SNAPSHOT | STACK
VIEW
BREAKPOINT | SNAPSHOTS [«@lPREV | TUES 11:32:56 | NEXT [~"438 BUTTON 418
'NDL%AATOR 20 var hitp = require (http’); A CALL STACK 420
21 + main ~TCOLLAPSED
@-}var server = http.createServer (function VIEW
416 1™~ _request}response) { +startup 422
SELECTEDls ™ reSponse writeHead (200, {C Type™: Jexr
VARIABLE [response.writeHead (200, {"Content-Type™ | | _initialize_server EXPANDED
412/—\/ text/plain}); =| request= i‘ping,,\ VIEW
CODE |24 response.end (“Hello World \n”); L] port_num = 8000 ~——424
WINDOW |25 }); LOCAL
VARIABLE
2 OTHER SNAPSHOT | VALUES
27 server.listen (port_num); DATA B
28 \-—426
29 console.log (“Server running at timestamp = OTHER
hitp:/1127.0.0.1/"); | 2013051612345678 | DATA
A host_IP_address
428/_,SNAPSHOT BREAKPOINT:] 62.62.12.128
BREAKPOQINT| request = "ping”; =] total_memory_usage =
DEFINITION | day_of week <> “Monday”; — 1.2cG8B
Memory > 900MB;
id
N A
430~ S_NAPSHOT DATA (in addition to default) —
DATA timestamp; host_IP_address; =
COLLECTION | total_memory_usage; —
DEFINITION | B8 FULL DATA OBJECTS AT LOWEST STACK STSSEF’,'-&'UC;“TCH
LEVEL
v \
\ 432
U4SOI§R LAUNCH
INTERFACE BUTTON
400
EXAMPLE USER
INTERFACE

FIG. 4

U.S. Patent

Oct. 11, 2016

Sheet 5 of 10

US 9,465,721 B2

EXECUTION
USER INTERFACE SNAPSHOT MONITOR ENVIRONMENT
502 504 506
508~
DEFINE SNAPSHOT
CONDITIONS
510~
STORE SNAPSHOT s18
DEFINITION o
12—) 514 | RECEIVE APPLICATION |
TRANSMIT SNAPSHOT | [RECEIVE SNAPSHOT v ~520
DEFINITION DEFINITION [BEGINEXECUTION |
d ~516 522~ bi
[MONITOR EXECUTION | EXECUTE APPLICATION |
|
524 :
SNAPSHOT [
y CONDITION [
MET? |
YES
SCZ:lEE APPLICATION TO v 528
SAUSE EXEQUTION. [€__PAUSE EXECUTION |
530~ v
GATHER DATA DEFINED 532
IN SNAPSHOT —>] RECEIVE DATA
DEFINITION REQUEST
v 534
500 | GATHER DATA |
METHOD FOR 538 7 536
~ Yo
COLLECTING SNAPSHOT
INSTANCES | RECEIVEDATA |« TRANSMIT DATA |
540~ v
GATHER METADATA AND
OTHER STATE
542~ v ~544
CAUSE APPLICATION TO| | RECEIVE RESUME
RESUME REQUEST
SAB~_ __v______ V546
| ENCRYPT SNAPSHOT | [RESUME EXECUTION |
L DATA __ ___ |
550~ v
| STORE SNAPSHOT |
]

FIG. 5

U.S. Patent Oct. 11, 2016 Sheet 6 of 10 US 9,465,721 B2

METHOD FOR INSERTING
SNAPSHOT CODE INTO
602~ AN APPLICATION

RECEIVE SOURCE CODE | 600
604~ v

IDENTIFY EACH LOCATION IN SOURCE
CODE FOR SNAPSHOT

v
< FOR EACH <
LOCATION %
— 608
606 DEFINE CONDITION FOR
SNAPSHOT
v 610
CREATE EXPRESSION TO BE
EVALUATED FOR CONDITION
v 612
INSERT EXPRESSION AND
SNAPSHOT API CALL INTO
SOURCE CODE
614~ y |
| STORE UPDATED SOURCE CODE |
616~ v

| EXECUTE SOURCE CODE |

FIG. 6

U.S. Patent Oct. 11, 2016 Sheet 7 of 10 US 9,465,721 B2

METHOD FOR COLLECTING

702~ SNAPSHOT INSTANCE

| LAUNCH SNAPSHOT CODE | 700
704~ v
| RETRIEVE CALL STACK |
FOR EACH FRAME ¢
IN THE CALL STACK
— 708
706 | RETRIEVE LOCAL VARIABLES |
~710
RETRIEVE INPUT VALUES TO
FUNCTION
712 714
CAPTURE CAPTURE SOURCE
SOURCE CODE INVICINITY H
CODE? OF BREAKPOINT
716
IDENTIFY POINTERS TO
SOURCE CODE LOCATIONS
718~ 5 I

IDENTIFY MEMORY OBJECTS
FOR UNPACKING

FOR EACH
MEMORY OBJECT
— 722
720 RETRIEVE FIRST LEVEL DATA
VALUES
»
ADDITIONAL
LEVEL?
726
RETRIEVE NEXT LEVEL
VALUES
|
728~ y
| RETRIEVE METADATA |
730~ v
[APPLY FORMATTING TO DATA |
732~ v
| APPLY ENCRYPTION |
734~ v
TRANSMIT SNAPSHOT INSTANCE TO
STORAGE
736~ v

[TERMINATE SNAPSHOT CODE |

FIG. 7

U.S. Patent

802~

Oct. 11, 2016

Sheet 8 of 10

US 9,465,721 B2

METHOD FOR
WRAPPING FUNCTIONS
WITH SNAPSHOT CODE

| BEGIN EXECUTION OF APPLICATION |

>

804

Y
| RECEIVE FUNCTION FOR EXECUTION |

<

FOR EACH SNAPSHOT

DEFINITION

800

808

806 DOES
SNAPSHOT
CONDITION \
APPLY?
810
CREATE SNAPSHOT
CONDITION EXPRESSION
v 812
INSERT SNAPSHOT
COLLECT|ON CODE
814~
CREATE PERFORMANCE MONITORING
WRAPPER
816~ v

WRAP FUNCTION IN PERFORMANCE
MONITORING WRAPPER

818~

v

| EXECUTE WRAPPED FUNCTION |

820~

v

| COLLECT PERFORMANCE DATA |

822~

v

| COLLECT SNAPSHOT INSTANCES |

YES

ANOTHER
FUNCTION?

FIG. 8

U.S. Patent Oct. 11, 2016 Sheet 9 of 10 US 9,465,721 B2

METHOD FOR
SNAPSHOT
902~ USE CYCLE

| IDENTIFY SNAPSHOTS | 900

» 904
| EXECUTE APPLICATION |

906

SNAPSHOT
CONDITION
MET?
908~ YES
COLLECT PROGRAM STATE AT
SNAPSHOT INSTANCE

910~ v
| STORE SNAPSHOT INSTANCE |

916
| LAUNCH DEBUGGING INTERFACE |

!

Y 918
| SELECT SNAPSHOT INSTANCE |

v 920
| VIEW/BROWSE SNAPSHOT DATA |

v 922

| VIEW/BROWSE PERFORMANCE DATA |
924

| EDIT/MODIFY SOURCE CODE |

ANOTHER
SNAPSHOT?

928

COMPILE APPLICATION
|

FIG. 9

U.S. Patent Oct. 11, 2016 Sheet 10 of 10 US 9,465,721 B2

METHOD FOR
VIEWING SNAPSHOT
1002~ INSTANCE

| LAUNCH DEBUG INTERFACE | 1000

», 1004
| RETRIEVE SNAPSHOT INSTANCE |
v 1006

IDENTIFY LINKS TO SOURCE CODE
FROM SNAPSHOT

v 1008
RETRIEVE SOURCE CODE FROM
REPOSITORY

!

Y 1010
| IDENTIFY SNAPSHOT VIEW |
v 1012

| DISPLAY SOURCE CODE FORVIEW |
1014

[DISPLAY LOCAL VARIABLES FOR VIEW |
~1016

| DISPLAY GLOBAL VARIABLES |

v 1018
| DISPLAY CALL STACK |

v 1020

IDENTIFY VARIABLE TO ADD TO
SNAPSHOT

v 1022

MODIFY CONDITION FOR TAKING
SNAPSHOT

1024

YES

NO 1026

STORE UPDATED SNAPSHOT
DEFINITION

1028

ANOTHER
SNAPSHOT?

YES

FIG. 10

US 9,465,721 B2

1
SNAPSHOTTING EXECUTING CODE WITH
A MODIFIABLE SNAPSHOT DEFINITION

BACKGROUND

Crash dumps are datasets that may be collected when a
computer program encounters an error for which the com-
puter can no longer function. Operating systems and other
software management products may collect data at a cata-
strophic failure so that a programmer may be able to detect
the cause of the failure. The programmer may then be able
to recreate the error or make changes that may prevent the
error from occurring again.

SUMMARY

A tracing and debugging system may take a snapshot of
an application in response to an event, and may continue
executing the program after the snapshot is captured. The
snapshot may be stored and retrieved later in a debugging
tool where a programmer may browse the snapshot or the
snapshot may have some other analysis performed. The
snapshot may contain a subset of the state of the application,
such as call stacks, portions of source code, the values of
local and global variables, and various metadata. The snap-
shot may be defined in a snapshot configuration that may
include an event description and data to be collected.

A tracing and debugging system may collect both perfor-
mance related tracer data and snapshot data. The tracer data
may contain aggregated performance and operational data,
while the snapshot data may contain call stack, source code,
and other information that may be useful for debugging and
detailed understanding of an application. The snapshot data
may be stored in a separate database from the tracer data, as
the snapshot data may contain data that may be private or
sensitive, while the tracer data may be aggregated informa-
tion that may be less sensitive. A debugging user interface
may be used to access, display, and browse the stored
snapshot data.

A debugging system may display snapshot information
that may be collected in response to an event identified while
an application executes. The debugging system may allow a
user to browse the various data elements in the snapshot, and
may allow the user to modify a snapshot configuration by
including or excluding various data elements within the
snapshot data. The user interface may have a mechanism for
including or excluding data elements that may be presented
during browsing, as well as options to change the events that
may trigger a snapshot. The updated snapshot configuration
may be saved for future execution when the event conditions
are satisfied.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings,

FIG. 1 is a diagram illustration of an embodiment show-
ing a system for snapshot debugging.

FIG. 2 is a diagram illustration of an embodiment show-
ing a network environment with devices that may collect and
view snapshots.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a diagram illustration of an embodiment show-
ing a combined performance monitoring and snapshot gath-
ering system.

FIG. 4 is a diagram illustration of an embodiment show-
ing an example user interface for a debug viewer.

FIG. 5 is a flowchart illustration of an embodiment
showing a method for collecting snapshot instances.

FIG. 6 is a flowchart illustration of an embodiment
showing a method for inserting snapshot code in an appli-
cation.

FIG. 7 is a flowchart illustration of an embodiment
showing a more detailed method for collecting snapshot
instances.

FIG. 8 is a flowchart illustration of an embodiment
showing a method for wrapping function with snapshot
code.

FIG. 9 is a flowchart illustration of an embodiment
showing a method for a snapshot use cycle.

FIG. 10 is a flowchart illustration of an embodiment
showing a method for viewing a snapshot instance.

DETAILED DESCRIPTION

Snapshotting Executing Code with a Modifiable
Snapshot Definition

A snapshot debugging system may take snapshots of an
application in response to an event, and store the snapshots
for later viewing. The snapshots may occur as an application
executes, and may collect various program state at the
designated events. The program state may include local and
global variable values, call stacks, source code related to the
executing code, and other information.

A debugging interface may be used to view, browse, or
otherwise inspect the contents of each snapshot. In some
cases, the snapshots may be relatively lightweight glimpses
of'the program as each event is detected. A programmer may
define snapshots for conditions where problems may have
occurred in the past, and the snapshots may allow the
programmer the ability to look back to the program state at
the time of the event to determine the causes and effects of
the monitored event.

The snapshot mechanism may be deployed in several
manners. In a simple implementation, a programmer may
manually insert snapshot code into an application. The
snapshot code may include conditions that, when satisfied,
cause a snapshot to be taken.

In a more complex implementation, the snapshot code
may be deployed by monitoring the application code at
runtime. In such an implementation, a monitoring agent may
check for the snapshot conditions. When the conditions are
satisfied, the monitoring agent may cause the application to
pause, then collect the snapshot data, and cause the appli-
cation to resume execution. Such an implementation may be
deployed in conjunction with a monitoring system that may
wrap function calls or provide some other performance
monitoring.

The snapshots may be edited and modified. The snapshot
may include a definition of the event that may trigger a
snapshot to be taken, as well as a definition of the data to be
collected. The triggering event definition may be defined
using any type of expression, event, or other information,
and may be evaluated at runtime. The data collection defi-
nition may define the type of data to collect, as well as values
from local and global variables, metadata, external events, or

US 9,465,721 B2

3

other information. In some embodiments, the snapshots may
include executable code that may be executed as part of the
data collection process.

The snapshots may be viewed using a viewing or brows-
ing user interface. In many cases, the snapshots may be
viewed in a debugging user interface, which may also serve
as part of a real time debugger. Such embodiments may view
the stored snapshots as instances of the real time debugger
that are recalled from the point the snapshots were taken.
The user interaction with the snapshots may be similar to the
user interaction with a real time debugger, but may lack the
ability to step forward or backwards through the code like a
real time debugger.

The snapshot debugging system may be a lightweight data
collection system that may gather program state at various
events. The data collection may be lightweight in the sense
that an application may be paused for a short period of time,
then continue execution. Such data collection may give a
programmer some insight into what occurs around specific
events, so that the programmer may be better able to
improve or modify the application.

Combined Performance Tracer and Snapshot Debugging
System

A tracing and snapshot debugging may integrate continu-
ous performance measurements and snapshots to better
understand a computer application’s behavior. The perfor-
mance measurement system may monitor an application on
a periodic basis, and may be a platform on which snapshots
of the program state may be taken.

The performance measurement system may monitor an
application by different mechanisms, such as instrumenting
the application, monitoring an execution environment in
which an application runs, or other mechanisms. While the
monitoring is ongoing, a snapshot manager may detect
conditions for snapshots and may cause a snapshot to be
taken and stored.

The performance measurements may be aggregations of
performance metrics, such as counters or other summary
metrics, while the snapshots may contain actual data that
may be handled or processed by an application. In such
embodiments, the snapshots may contain sensitive data and
the snapshots may be stored in a separate storage repository
than performance metrics, which may contain less sensitive
information. In some embodiments, some or all of the
snapshot data may be encrypted.

Breakpoint Setting Through a Debugger User Interface

A debugging user interface may be used for viewing and
browsing snapshot instances. When viewing a snapshot
instance, the debugging user interface may have a similar
user experience as when the same interface may be used for
real time debugging, however the data being displayed may
be retrieved from a storage repository for the snapshots as
opposed to retrieving data from a live execution environ-
ment in the case of real time debugging.

A user may be able to create or modify a snapshot
definition for deploying future snapshots. In many cases, a
snapshot may contain a subset of an application’s state at the
time a snapshot is taken. When a user identifies a variable or
other data object that is not contained in a snapshot, the user
may be able to add the object to future snapshots. In a typical
user interface, the user may be able to drag and drop, right
click, or perform some other interaction in the user interface
to select the object for inclusion or exclusion from the
snapshot.

After a snapshot is defined, the snapshot may be deployed
to collect data while an application executes.

10

15

20

25

30

35

40

45

50

55

60

65

4

Throughout this specification and claims, the terms “pro-
filer”, “tracer”, and “instrumentation” are used interchange-
ably. These terms refer to any mechanism that may collect
data when an application is executed. In a classic definition,
“instrumentation” may refer to stubs, hooks, or other data
collection mechanisms that may be inserted into executable
code and thereby change the executable code, whereas
“profiler” or “tracer” may classically refer to data collection
mechanisms that may not change the executable code. The
use of any of these terms and their derivatives may implicate
or imply the other. For example, data collection using a
“tracer” may be performed using non-contact data collection
in the classic sense of a “tracer” as well as data collection
using the classic definition of “instrumentation” where the
executable code may be changed. Similarly, data collected
through “instrumentation” may include data collection using
non-contact data collection mechanisms.

Further, data collected through “profiling”, “tracing”, and
“instrumentation” may include any type of data that may be
collected, including performance related data such as pro-
cessing times, throughput, performance counters, and the
like. The collected data may include function names, param-
eters passed, memory object names and contents, messages
passed, message contents, registry settings, register con-
tents, error flags, interrupts, or any other parameter or other
collectable data regarding an application being traced.

Throughout this specification and claims, the term
“execution environment” may be used to refer to any type of
supporting software used to execute an application. An
example of an execution environment is an operating sys-
tem. In some illustrations, an “execution environment” may
be shown separately from an operating system. This may be
to illustrate a virtual machine, such as a process virtual
machine, that provides various support functions for an
application. In other embodiments, a virtual machine may be
a system virtual machine that may include its own internal
operating system and may simulate an entire computer
system. Throughout this specification and claims, the term
“execution environment” includes operating systems and
other systems that may or may not have readily identifiable
“virtual machines” or other supporting software.

Throughout this specification and claims, the term “appli-
cation” is used to refer to any combination of software and
hardware products that may perform a desired function. In
some cases, an application may be a single software program
that operates with a hardware platform. Some applications
may use multiple software components, each of which may
be written in a different language or may execute within
different hardware or software execution environments. In
some cases, such applications may be dispersed across
multiple devices and may use software and hardware com-
ponents that may be connected by a network or other
communications system.

Throughout this specification, like reference numbers
signify the same elements throughout the description of the
figures.

In the specification and claims, references to “a proces-
sor” include multiple processors. In some cases, a process
that may be performed by “a processor” may be actually
performed by multiple processors on the same device or on
different devices. For the purposes of this specification and
claims, any reference to “a processor” shall include multiple
processors which may be on the same device or different
devices, unless expressly specified otherwise.

When elements are referred to as being “connected” or
“coupled,” the elements can be directly connected or
coupled together or one or more intervening elements may

US 9,465,721 B2

5

also be present. In contrast, when elements are referred to as
being “directly connected” or “directly coupled,” there are
no intervening elements present.

The subject matter may be embodied as devices, systems,
methods, and/or computer program products. Accordingly,
some or all of the subject matter may be embodied in
hardware and/or in software (including firmware, resident
software, micro-code, state machines, gate arrays, etc.)
Furthermore, the subject matter may take the form of a
computer program product on a computer-usable or com-
puter-readable storage medium having computer-usable or
computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. In the context of this document, a computer-usable
or computer-readable medium may be any medium that can
contain, store, communicate, propagate, or transport the
program for use by or in connection with the instruction
execution system, apparatus, or device.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. By way of
example, and not limitation, computer readable media may
comprise computer storage media and communication
media.

Computer storage media includes volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can accessed by an instruc-
tion execution system. Note that the computer-usable or
computer-readable medium could be paper or another suit-
able medium upon which the program is printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, of otherwise processed in a suitable
manner, if necessary, and then stored in a computer memory.

When the subject matter is embodied in the general
context of computer-executable instructions, the embodi-
ment may comprise program modules, executed by one or
more systems, computers, or other devices. Generally, pro-
gram modules include routines, programs, objects, compo-
nents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Typically, the func-
tionality of the program modules may be combined or
distributed as desired in various embodiments.

FIG. 1 is an illustration of an example embodiment 100
showing a system for snapshot debugging. Embodiment 100
is an example of various components that may interact to
collect snapshot data when conditions for the snapshot are
met, then store the snapshots to be viewed by a debug
viewer. The snapshots may capture application state in
response to some condition or event being detected.

The snapshot system may collect application state, such
as call stack information and values for selected variables.
The snapshot may capture a glimpse of the application at a
specific event or condition, and may help a programmer
understand an application’s behavior.

The snapshot system may collect snapshots that may be
viewed and browsed later. Such a system may be used to
collect data over time. In one use case, a programmer may

20

25

40

45

6

have a bug or other anomaly that may be difficult to
reproduce. The programmer may create one or several
snapshots that may be taken under conditions similar to the
anomaly. The programmer may launch the snapshots and let
the application run, so that the snapshots collect program
state when the anomaly occurs. The programmer may come
back after a period of time and view the snapshot datasets to
help understand the application’s state at the time of the
anomaly.

The user interface for viewing, browsing, and exploring
the snapshots may be similar to a debugging user interface.
In a debugging user interface, an application’s source code
may be displayed along with local and global variable
values. The programmer may explore a snapshot using the
same user interface as the programmer would use to explore
a running application in debugging mode.

A snapshot definition 102 may contain an event descrip-
tion 104 and a data definition 106. The event description 104
may be a condition under which the snapshot may be taken,
and the data definition 106 may define the data to be
collected.

The event description 104 may include any type of
expression for defining an event. The expression may use an
internal value, such as when local variable X=1. The expres-
sion may use external information, such as a specific time of
day or when a hardware interrupt may be raised. In some
cases, the expression may include complex expressions that
may be evaluated at runtime to determine whether or not to
take a snapshot.

Throughout this specification and claims, the term “take
a snapshot” is used to denote a process of collecting state
information in response to an event. The state information
may be collected while an application is paused. In some
embodiments, snapshot data collection code may be inserted
into an application, which may effectively pause the appli-
cation while the snapshot data collection code executes and
collects various application state. In other embodiments, the
processing of an application may be paused within and
operating system or other execution environment, and a
separate process may collect the application state during the
pause.

The data definition 106 may define the data to collect.
Some embodiments may have a default data collection
setting that may be varied by including or excluding ele-
ments from the default setting. In many cases, the data
definition may include a call stack, which may include
application code currently being executed, plus each call
frame of higher level functions back to an outer loop or main
level of an application.

A call stack may be a data structure that stores information
about active subroutines of an application. The call stack
may be known as an execution stack, control stack, run-time
stack, machine stack, or other nomenclature. In many cases,
the call stack may define a point to which a subroutine may
return when it has finished execution. Some call stacks may
store data for local variables at each call frame of the stack,
as well as parameters that may be passed to and from
subroutines.

The data definition 106 may include complex memory
objects that may be defined in a hierarchical structure. In
some embodiments, such memory objects may be collected
by unpacking the structure at different levels. For example,
a default setting may unpack and collect complex memory
objects at a first level, such that the first level values of the
data structure may be captured and saved in the snapshot
definition. Some data definition settings may cause such
complex memory objects to be collected in their entirety, or

US 9,465,721 B2

7

at various levels within the data structure’s hierarchy. In
some cases, a specific sub-object, value, or set of values may
be defined for collection.

The data definition 106 may include various metadata
relating to the snapshot. Such metadata may include external
information about the computer system on which the appli-
cation is executing, such as the processor type and speed,
memory and storage capacities and availabilities, hardware
and software configurations, and other information. Such
metadata may also include timestamps, performance infor-
mation, or other metadata.

The snapshot definitions 102 may be consumed by a
snapshot monitoring agent 108, which may cause snapshot
data to be collected when the event described in an event
description 104 may occur. The snapshot monitoring agent
108 may be deployed in several different forms.

In a simple deployment, a programmer may manually
insert snapshot code into an application. In such a deploy-
ment, the snapshot code may be executable code that may
collect data and transmit the data to a snapshot repository.
The executable code may be include a call to a debugging
application programming interface 112 to collect call stack
information, metadata, variable values, and other informa-
tion. The executable code may also include a call to a
collection application programming interface which may
receive the data, perform some processing and packaging of
the data, and cause the snapshot instance to be stored.

In a more complex deployment, snapshot code may be
inserted into an application automatically. In some such
deployments, the snapshot code may be inserted prior to
runtime by automatically traversing the application code to
identify conditions for which a snapshot may be taken. Such
insertion may occur prior to runtime by analyzing source
code or intermediate code, determining an appropriate loca-
tion, and adding snapshot code that may evaluate the event
description and, when the event conditions are satisfied,
cause a snapshot to be taken.

Some embodiments may insert snapshot code into an
application at runtime. In one runtime insertion system, a
monitoring system may wrap various functions for perfor-
mance monitoring. The monitoring system may be detect
that a condition for a snapshot may be present, and may
cause the snapshot code to be inserted.

In another runtime insertion system, a monitoring agent
may monitor a running application, detect that the event
conditions are satisfied, and cause the application to pause.
Some such systems may deploy the monitoring agent as a
separate thread or process than the application which is
being monitored. Some such systems may use monitoring
mechanisms that may be part of an operating system or
execution environment to monitor the application as it
executes.

The execution environment 110 may execute an applica-
tion 114 from which snapshots may be taken. The execution
environment 110 may be an operating system, process
virtual machine, system virtual machine, or other construct
that may manage the execution of the application 114.

The application 114 may be any type of computer pro-
gram. The application 114 may be written in any computer
language, from high level languages with complex frame-
works to binary executable code. In some cases, the appli-
cation may be compiled prior to execution, while in other
cases, the application may be interpreted at runtime.

Snapshot instances 116 may be generated at each event.
The snapshot instances 116 may include call stack 118, local
variables 120, global or shared variables 122, and source
code 124 as well as other data and metadata. In systems

10

15

20

25

30

35

40

45

50

55

60

65

8

where the source code may be readily available by a
debugging application programming interface 112, such as
when the application 114 is interpreted, the snapshot moni-
toring agent 108 may be able to collect source code for each
call frame.

A snapshot instance 116 may include pointers to locations
in source code in some embodiments. Such pointers may
reference source code 128 which may be stored in a source
code repository 126. When the source code may be dis-
played while viewing a snapshot instance, the source code
may be retrieved from the source code repository 126

A debug viewer 130 may display snapshot instances. The
debug viewer 130 may be a full-fledged debugging system
that may be able to execute code in a user interface and have
functions for pausing execution, examining variables, set-
ting breakpoints, stepping through executable code, and
other functions. Such systems may also include editors,
compilers, and other components.

When displaying a snapshot instance, the debug viewer
130 may present the snapshot information using the same
user interface as the debugging system but may retrieve the
underlying data from a stored snapshot rather from an
execution environment in which the application may be
executing.

The debug viewer 130 may be any type of interface
through which a snapshot instance may be viewed. In many
cases, the user interface may present a subset of the snapshot
instance 116 and a user may explore or browse different
portions of the user interface to uncover and view various
data.

The debug viewer 130 may have capabilities to create and
edit snapshot definitions. A user may be able to identify
conditions or breakpoints for snapshot collection, as well as
include or exclude various data elements for collection. The
updated or newly created snapshots may be deployed for
execution when the application 114 is executed in the future.

FIG. 2 is a diagram of an embodiment 200 showing
components that may collect and view snapshot instances
when an application is executed. The example of embodi-
ment 200 is merely one example of a multi-device system
that may generate and view snapshot instanced. Other archi-
tectures may include single device and multiple device
architectures.

The architecture of embodiment 200 includes a device
202 on which the snapshots may be collected, as well as
several other devices for storing different elements of the
snapshot. A last device may view the snapshot instances. In
other embodiments, some or all of the functions illustrated
may be combined into one or more devices.

The diagram of FIG. 2 illustrates functional components
of a system. In some cases, the component may be a
hardware component, a software component, or a combina-
tion of hardware and software. Some of the components may
be application level software, while other components may
be execution environment level components. In some cases,
the connection of one component to another may be a close
connection where two or more components are operating on
a single hardware platform. In other cases, the connections
may be made over network connections spanning long
distances. Each embodiment may use different hardware,
software, and interconnection architectures to achieve the
functions described.

Embodiment 200 illustrates a device 202 that may have a
hardware platform 204 and various software components.
The device 202 as illustrated represents a conventional
computing device, although other embodiments may have
different configurations, architectures, or components.

US 9,465,721 B2

9

In many embodiments, the device 202 may be a server
computer. In some embodiments, the device 202 may still
also be a desktop computer, laptop computer, netbook com-
puter, tablet or slate computer, wireless handset, cellular
telephone, game console or any other type of computing
device.

The hardware platform 204 may include a processor 208,
random access memory 210, and nonvolatile storage 212.
The hardware platform 204 may also include a user interface
214 and network interface 216.

The random access memory 210 may be storage that
contains data objects and executable code that can be
quickly accessed by the processors 208. In many embodi-
ments, the random access memory 210 may have a high-
speed bus connecting the memory 210 to the processors 208.

The nonvolatile storage 212 may be storage that persists
after the device 202 is shut down. The nonvolatile storage
212 may be any type of storage device, including hard disk,
solid state memory devices, magnetic tape, optical storage,
or other type of storage. The nonvolatile storage 212 may be
read only or read/write capable. In some embodiments, the
nonvolatile storage 212 may be cloud based, network stor-
age, or other storage that may be accessed over a network
connection.

The user interface 214 may be any type of hardware
capable of displaying output and receiving input from a user.
In many cases, the output display may be a graphical display
monitor, although output devices may include lights and
other visual output, audio output, kinetic actuator output, as
well as other output devices. Conventional input devices
may include keyboards and pointing devices such as a
mouse, stylus, trackball, or other pointing device. Other
input devices may include various sensors, including bio-
metric input devices, audio and video input devices, and
other sensors.

The network interface 216 may be any type of connection
to another computer. In many embodiments, the network
interface 216 may be a wired Ethernet connection. Other
embodiments may include wired or wireless connections
over various communication protocols.

The software components 206 may include an operating
system 218 on which various software components and
services may operate. Depending on the embodiment, the
application 236 may be executed in an operating system 218
or in an execution environment 222. The operating system
218 and execution environments 222 may have debugging
application programming interfaces 220 and 224, respec-
tively.

A set of snapshot definitions 232 may define conditions
for taking snapshots. A snapshot and monitoring agent 230
may perform dual roles of monitoring and managing snap-
shot collection. During execution of the application 236, the
snapshot and monitoring agent 230 may detect that a con-
dition for a snapshot has been satisfied, then collect various
data elements as defined in the snapshot definition 232.

The snapshots may be taken by calling debugging appli-
cation programming interfaces 220 or 224. The debugging
application programming interfaces may respond to requests
to collect various program state, such as the call stack, local
and global variables, and other information. In some cases,
the executing source code may also be retrieved in this
manner.

The snapshots may be encrypted prior to being stored. An
encryption module 234 may encrypt some or all of the
snapshot prior to transmitting the snapshot over a network
238 to a snapshot storage system 246.

10

15

20

25

30

35

40

45

50

55

60

65

10

Some snapshots may contain sensitive or other informa-
tion that may have an obligation for control and security. For
example, an application that may process credit card num-
bers, personally identifiable information, or other sensitive
information may have such information gathered in a snap-
shot. To prevent such data from being viewed or accessed,
the snapshot be encrypted at the point of creation. The
snapshot may be decrypted by an authorized user when
using a debug viewer.

The encryption module 234 may use any type of encryp-
tion or obfuscation mechanism to protect the contents of a
snapshot instance. In some cases, a public/private key sys-
tem may be used, while in other cases some type of
substitution cypher, dictionary, or other mechanism may be
used to remove or obfuscate any sensitive information.

Some embodiments may selectively apply encryption or
obfuscation mechanisms. For example, a snapshot instance
may encrypt of obfuscate all data values for variables but
may leave other data in the snapshot instance in plain text.
A snapshot definition may include indicators for selectively
encrypting or obfuscating different data elements within the
snapshot instance.

The network 238 may connect various devices together.
The network 238 may be a local area network, wide area
network, or any other communications network.

A performance storage system 240 may collect and store
performance data collected during execution of the applica-
tion 236. The performance storage system 240 may include
a hardware platform 242, which may be similar to the
hardware platform 204. A performance database 244 may
store the various performance information datasets collected
by the snapshot and monitoring agent 230.

A snapshot storage system 246 may collect and store
snapshot instance data. The snapshot storage system 246
may have a hardware platform 248, which may be similar to
the hardware platform 204. A snapshot instance database
250 may store the individual snapshot instances.

In some embodiments, different security policies may be
applied to the performance data and snapshot data collected
from an application. In many cases, the performance data
may be aggregated data that may include function names but
may not include underlying data handled by the application.
In contrast, the snapshot data may include sensitive data that
may have a more restrictive security policy applied.

The security policies may be applied by having different
storage systems for performance and snapshot data, where
the snapshot data may be stored and managed with a more
restrictive security policy. A restrictive security policy may
dictate physical security, encryption settings, network con-
figuration, access restrictions, or other configurations in
order to limit access and protect data from unauthorized
access.

A source code storage system 252 may store and retrieve
application source code. The source code storage system 252
may have a hardware platform 254, which may be similar to
the hardware platform 204. Some such systems may include
version management systems that may save different ver-
sions of source code. When a version management system is
available, a snapshot may be created with a link or descriptor
to the specific version of the application that may be
executing. Such systems may retrieve the specified version
of the application source code when displaying the snapshot
instance in a debugging viewer.

A debugging system 258 may be a system on which a
programmer may view the snapshot instances among other

US 9,465,721 B2

11

functions. The debugging system 258 may operate on a
hardware platform 260, which may be similar to the hard-
ware platform 204.

A debug viewer 262 may be an application that may
display snapshot instances. In many cases, the debug viewer
262 may be an interactive application that may allow a
programmer to interact with the snapshot instances in a
similar manner as a debugger. The debug viewer 262 may be
a standalone application, may be an interactive page ren-
dered in a browser, or may have some other architecture.

The debugging system 258 may have a decryption module
264, which may decrypt the data encrypted by the encryp-
tion module 234 when the snapshot instance was created.

FIG. 3 is a diagram illustration of an embodiment 300
showing a combined performance monitoring and snapshot
gathering system. Embodiment 300 illustrates functional
components of a system that may apply performance or
monitoring wrappers to functions, and may also insert
snapshot code at runtime.

Embodiment 300 may illustrate one example of a system
that may wrap various functions for performance monitoring
or tracing. The wrappers may gather and store performance
information for each wrapped function, and the performance
information may be stored for analysis or potentially dis-
played in real time.

The wrapping function may be one mechanism whereby
the conditions for a snapshot may be evaluated with each
function call. When the conditions may be present, the
wrapping system may insert snapshot code into the wrapped
function or into the wrapper to cause a snapshot to be taken.

In some cases, a determination may be made at wrapping
time that some of the conditions for a snapshot may be
present, but that other conditions may be unknown. In such
a case, the snapshot code may include code that may
evaluate the additional conditions which, when met, may
cause the snapshot to be evaluated. In some cases, the
snapshot code may be inserted into a function and one or
more additional conditions may not be met, causing the
snapshot to not be taken.

The structure of the executable code representing a snap-
shot may include a set of conditions and a mechanism for
gathering and storing snapshot data. Such an embodiment
may be inserted into an application such that the application
halts other processing and executes the snapshot code.

The conditions may be expressed as executable code that
contains a full set or subset of conditions, and the executable
code may be evaluated at the point of taking a snapshot.
When all of the conditions are met, the snapshot executable
code that gathers snapshot information may then be
executed.

Such a mechanism may be deployed in both dynamic and
static languages. Dynamic languages may be a loose clas-
sification of programming languages that refer to those
computer languages that may have mechanisms for modi-
fying the application after compile time. Such actions may
include adding new code, extending objects and definitions,
modifying the type system, and other changes. Static lan-
guages may be able to perform such operations in some
cases, but may typically not contain explicit features for
doing so. Examples of dynamic programming languages are
ActionScript, Clojure, Common Lisp, JavaScript, Perl, PHP,
Python, R, Ruby, Smalltalk, and others.

A system may receive application code 302. The appli-
cation code 302 may contain several functions, with a
current function identified by an execution pointer 304. As

10

15

20

25

30

35

40

45

50

55

60

65

12

each function is identified for execution, a performance
monitor with snapshot manager 306 may process the func-
tion.

The incoming function may be wrapped using a wrapper
function 308. The wrapper function 308 may contain moni-
toring mechanisms that collect performance and operational
data, which may be used to monitor or display performance
or operational characteristics of the application.

When a function may be considered for wrapping, a
snapshot evaluator 310 may scan through one or more
snapshot definitions 312 to determine whether or not a
condition for a snapshot may be met by the function or
within the function.

When a snapshot has the potential to be executed within
a function or as part of a wrapper, the snapshot evaluator 310
may insert snapshot code into the function or wrapper. The
snapshot code may include additional conditions that may be
evaluated during execution.

When no snapshot code is to be inserted, a function 316
may be created with a performance monitoring wrapper 314.
The wrapped function may be executed by an execution
engine 324, and the wrapper may output performance data
326 for analysis.

When a snapshot may be taken as part of the function, a
wrapper may be created around the function 320, and
snapshot code 322 may be inserted into the function 320. In
some cases, the snapshot code 322 may be part of the
wrapper 318 and may be executed before or after the
function 320.

The wrapped function 320 may be executed by the
execution engine 324, with the wrapper 318 generating
performance data 326 and the snapshot code 322 generating
snapshot instances 328.

Embodiment 300 is merely one mechanism for deploying
snapshots that may be useful with dynamic languages. Other
embodiments may have different logic or may deploy snap-
shots in different manners using dynamic or static program-
ming languages.

FIG. 4 is an example illustration of an embodiment 400
showing a user interface 402 that may display snapshot
information to a user. The user may be able to browse the
contents of a snapshot, as well as create or modify a
snapshot. The user interface 402 is merely one example of
such a user interface.

The user interface 402 may allow a programmer to
browse source code and the state of an application at the
point a snapshot was taken. The programmer may be able to
view the call stack, the source code at each level of the call
stack, and values of variables. The programmer may be able
to modify existing snapshots or create new snapshots for
later execution.

A timeline 404 may present both performance data and
snapshot instances. The top portion of the timeline may
contain various performance indicators 406, while the bot-
tom portion of the timeline may include snapshot indicators
408. Each of the snapshot indicators 408 may represent a
single snapshot.

The timeline 404 may be an interactive mechanism for
viewing performance information that may have been col-
lected over a period of time, along with the presence of
snapshots that may have been taken during the same time
period. When the timeline 404 is an interactive interface, a
user may be able to select various elements of the timeline
to view underlying data. For example, a user may click on
one of the performance indicators 406 to view performance
data collected during the representative time period.

US 9,465,721 B2

13

A selected snapshot 410 may cause the user interface 402
to be populated as illustrated. The selected snapshot 410
may represent a specific snapshot that a user wishes to view,
and the selection may cause the snapshot to be retrieved
from storage and displayed in the user interface 402.

A code window 412 may display the source code of the
application at the point of a snapshot. The source code may
initially be displayed at the location that the snapshot was
taken, and the user may be able to traverse up the call stack
to view source code at locations where the various functions
in the call stack were called.

In some embodiments, the source code may be contained
in the snapshot definition, while in other embodiments, a
snapshot may contain pointers or other links to the source
code. Snapshots that store source code may be useful in
systems where the source code may be changing rapidly,
such as in development environments. In such systems, the
entire source code of an application may not be available for
browsing, as the snapshot may only contain source code in
the vicinity of the functions in the call stack.

A breakpoint indicator 414 may signify the location in the
source code where a snapshot was taken. The code in the
code window 412 may be the code in the vicinity of the
breakpoint, and the user may be able to scroll up or down in
the code window 412 to view more.

The variables in the code window 412 may be interactive
elements. In the example of embodiment 400, a selected
variable 416 may be highlighted. A user may select such a
variable by clicking, right clicking, or perform some other
action to indicate and select the variable. While the variable
is selected, the user may be able to view the current value of
the variable, as well as use the variable to define a break-
point, add or remove the breakpoint from data collection,
and other uses.

In some cases, the selected variable 416 may be high-
lighted by the user interface when the value for the selected
variable is known.

A call stack view 418 may serve as both a tool to view
variable values as well as a code navigation tool. The call
stack view 418 may show each function called as a subrou-
tine to a top level function. When the call stack view is
interactive, a user may be able to select and expand a
particular frame in the call stack.

An expansion of a call stack frame may present the local
variables for the expanded level of the call stack. In the
example of embodiment 400, the frame “main” is shown in
a collapsed view, while the frame “initialize server” is
shown in an expanded view 422. In the expanded view 422,
local variables 424 are shown.

The call stack view 418 may be used to navigate the
source code. In some embodiments, the selection of a
specific call stack frame may cause the code window 412 to
be updated with the source code in the vicinity of the
subroutine call represented by the call stack frame.

Other data 426 may be displayed as part of a snapshot
view. The other data 426 may be metadata, external data, or
other information that may be collected along with the
snapshot.

A breakpoint definition 428 may define the conditions
under which the snapshot was collected. In the example of
embodiment 400, the snapshot was taken when the incoming
data object was “ping”, the day of the week was not Monday,
and the value of memory was greater or equal to 900 MB.
The breakpoint definition 428 may be an interactive window
where a programmer may be able to add, remove, or modify
the conditions for the snapshot.

20

25

30

35

40

45

50

55

14

Similarly, the data collection definition 430 may define
the data to be collected. In many cases, a snapshot system
may have a default set of data that may be collected. In such
cases, the data collection definition 430 may define changes
to the default settings by adding or removing values to be
collected. In many cases, the data collection definition 430
may include metadata or other information that may be
outside the normal scope of a snapshot.

If the breakpoint definition 428 or data collection defini-
tion 430 are updated, the programmer may launch the
snapshot for future data collection by using the launch
button 432. By launching the snapshot, future execution of
the application may be done with the new snapshot defini-
tion.

A set of navigation buttons may be used to navigate
through the various snapshots. A previous button 434 and
next button 438 may be actuated to select the previous and
next snapshots, respectively. When selected, the snapshot
may be displayed in the user interface 402. An identifier 436
may display the date and time of the current snapshot for the
user’s reference.

FIG. 5 is a flowchart illustration of an embodiment 500
showing a method for collecting snapshot instances. The
operations within a user interface 502 are illustrated in the
left hand column, operations within a snapshot monitor 504
are illustrated in the center column, and operations within an
execution environment 506 are illustrated in the right hand
column.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 500 illustrates a general method that shows
snapshot deployment and data collection. A user may create
snapshot definitions using a user interface 502, then the
snapshot definitions may be deployed to a snapshot monitor
504. The snapshot monitor 504 may cause the snapshots to
be deployed and collect snapshot instances by working in
conjunction with an execution environment 506.

The method of embodiment 500 is a general method that
may be deployed using several different types of mecha-
nisms. In one mechanism, a programmer may manually
insert snapshot code in an application. In other mechanisms,
the snapshot code may be inserted in an application before
or during execution. In still other mechanisms, a snapshot
monitor 504 may be a separate process that may interact
with an execution environment 506 but may not change the
application code.

In a user interface 502, snapshot conditions may be
defined in block 508 and stored in block 510. The snapshot
conditions may include both conditions for executing the
snapshot and the data to be collected. The snapshot defini-
tion may be transmitted in block 512 to the snapshot monitor
504, which may receive the snapshot definition in block 514.

The execution environment 506 may receive an applica-
tion in block 518 and begin execution in block 520. While
the application executes in block 522, the snapshot monitor
504 may monitor the execution in block 516.

During the monitoring, the snapshot monitor 504 may
check to determine whether or not the conditions for the
snapshot have been met in block 524. When the conditions
have not been met, the process may return to block 516.

US 9,465,721 B2

15

When the conditions for a snapshot have been met in
block 524, the snapshot monitor 504 may cause the appli-
cation to pause execution in block 526, which may be
transmitted to the execution environment 506 where the
execution may be paused in block 528.

The snapshot monitor 504 may gather data defined in the
snapshot definition in block 530. Part of the data gathering
may include transmitting a request to the execution envi-
ronment 506, which may be received in block 532. The
execution environment 506 may gather the requested data in
block 534 and transmit the data to the snapshot monitor 504
in block 538.

Many execution environments may have a debugging
application programming interface or other mechanisms by
which various data may be collected. A typical debugging
application programming interface may be able to retrieve a
call stack as well as local, global, and other variables.

The data may be received by the snapshot monitor 504 in
block 538. Additional state and metadata may be collected
in block 540 while the application may be paused, after
which the snapshot monitor 504 may cause the application
to resume in block 542. The execution environment 506 may
receive the resume request in block 544 and resume execu-
tion in block 546. The process of the execution environment
may return to block 522 to continue execution.

The snapshot monitor 504 may optionally encrypt the
snapshot data in block 548 before storing the snapshot
instance in block 550. In some embodiments, certain por-
tions or subsets of the snapshot data may be encrypted.

FIG. 6 is a flowchart illustration of an embodiment 600
showing a simplified method for inserting snapshot code
into an application. The method of embodiment 600 may be
a manual or automated method that may modify an appli-
cation’s code by inserting snapshot code in locations where
a snapshot may be taken.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Snapshot code may consist of a set of conditions for
collecting a snapshot along with code for collecting and
storing snapshot data as snapshot instances. When the snap-
shot code is executed, the application in effect stops execu-
tion until the snapshot code has completed, then the appli-
cation may resume processing.

The source code may be received in block 602. Each
location within the source code for a snapshot may be
identified in block 604.

Each of the locations may be processed in block 606. For
each location, a condition for the snapshot may be defined
in block 608. An expression defining the condition may be
created in block 610. The expression may be executable
code in the same language as the application.

In some embodiments, the snapshot code may be defined
in a high level programming language that may have been
used for the application. In other embodiments, the snapshot
code may be defined using intermediate code, machine
language, or in a different language than the main applica-
tion.

The snapshot code may be inserted into the application in
block 612. In some embodiments, a snapshot may call
various application programming interfaces that may gather,
process, and store snapshot instances.

10

15

20

25

30

35

40

45

55

60

65

16

After processing each of the locations and inserting
snapshot code in each location in block 606, the updated
source code may be stored in block 614 and executed in
block 616.

Embodiment 600 may be implemented in a manual
method by a programmer. In such a case, the programmer
may manually identify the locations for snapshots and insert
code for each snapshot.

In other cases, the method may be implemented in an
automated fashion. Some embodiments may process source
code for an application to automatically scan for locations in
the source code for snapshots, then automatically insert
snapshot code. Such automated systems may insert snapshot
code in source code, which may be subsequently compiled
or interpreted. In some cases, the automated systems may
insert snapshot code in intermediate code form, which may
be subsequently compiled in a just in time compiler prior to
execution, or may be interpreted in intermediate form.

The method of embodiment 600 places snapshot code at
predefined locations within the application. Such an embodi-
ment may infer that one of the conditions for a snapshot may
be execution of the application to the location of the snap-
shot code.

FIG. 7 is a flowchart illustration of an embodiment 700
showing a more detailed method for collecting snapshot
instances. Embodiment 700 illustrates one example of the
data that may be collected in a snapshot, along with an
example method for how these data may be collected.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 700 may illustrate the data collection per-
formed by for a snapshot instance. In some cases, the
operations of embodiment 700 may be embodied in execut-
able code that may be inserted in an application.

Snapshot code may be launched in block 702.

The call stack may be retrieved in block 704. The call
stack may have multiple frames, each of which may define
a calling function that calls a subroutine. Many computer
languages may have a notion of a call stack, although some
languages may use different nomenclature and some pro-
gramming environments may have more or fewer data
elements stored in the call frames.

Each frame of the call stack may be processed in block
706. For each frame, local variables for the frame may be
retrieved in block 708. Values of parameters passed to the
called function may be retrieved in block 710.

In some embodiments, a snapshot may include source
code for the application. When the source code may be
included in a snapshot in block 712, the source code in the
vicinity of the breakpoint or calling routine may be captured
in block 714. When the source code may not be included in
block 712, pointers to locations in the source code may be
identified in block 716.

Some embodiments unpack various memory objects,
which may be defined in various complex structures, an
example of which may be hierarchical structure. Such
memory objects may be identified in block 718 and pro-
cessed in block 720.

For each memory object, the first level of data values may
be retrieved in block 722. If another level is to be retrieved
in block 724, the additional level may be retrieved in block

US 9,465,721 B2

17

726. When all of the levels have been retrieved that were
requested in block 724, the process may return to block 720
to process another memory object.

In some snapshot definitions, a user may be able to select
the amount of data to collect. Part of such a definition may
include defining a portion or all of a complex data object to
collect. Some data objects may be very large and cause a
large amount of data to be collected in a snapshot. When all
of such data may not be useful, a subset may be collected.

Metadata may be collected in block 728. The metadata
may be various data that may not be retrievable from the call
stack and various memory objects. For example, metadata
may include timestamps, external events, hardware interrupt
states, hardware and software configurations, performance
metrics, or other information.

The snapshot data may be formatted in block 730 and
encryption may be applied in block 732. The snapshot may
be transmitted to storage in block 734 and the snapshot code
may end in block 736.

FIG. 8 is a flowchart illustration of an embodiment 800
showing a method for wrapping functions with snapshot
code. Embodiment 800 illustrates one example of a mecha-
nism to deploy snapshot code, and one which may be
automated. In some cases, the method of embodiment 800
may be incorporated into a monitoring system that may wrap
functions for performance monitoring.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 800 may illustrate a mechanism that may
integrate performance monitoring and snapshot gathering in
a single system. The performance monitoring may operate
by wrapping all or selected functions with a performance
monitoring function that may gather operational data about
an application. As each function may be evaluated for
monitoring, an additional analysis may determine whether
or not the conditions for a snapshot may be met by the
function. If so, the system may add snapshot code to the
function or the wrapper to collect snapshot data.

An application may begin execution in block 802. The
application may have multiple functions that may be
executed as part of the application. The functions may be
subroutines or other blocks of executable code.

A function may be received in block 804. An analysis may
begin in block 806 to evaluate each of the snapshot defini-
tions to the current state of the application. For each snap-
shot definition, an analysis may determine if a snapshot
condition may apply to the function in block 808. If not, the
snapshot is skipped and the process may return to block 806.
If so, a snapshot condition expression may be created in
block 810 and snapshot code may be inserted into the
function or wrapper in block 812.

The analysis of block 808 may attempt to identify whether
or not any snapshot definition may apply to the function
about to be executed. The analysis may be an initial deter-
mination that a snapshot may be performed in a function,
then additional conditions may be added to the snapshot
code, so that the snapshot may be executed only when the
full set of conditions may be satisfied.

A performance monitoring wrapper may be created in
block 814 and the function to be executed may be wrapped
in the performance monitoring wrapper in block 816.

10

15

20

25

30

35

40

45

50

55

60

65

18

In some cases, the snapshot code may be inserted into the
executable code of the function. In other cases, the snapshot
code may be inserted into the wrapper. When the snapshot
code is part of the wrapper, the snapshot code may be
configured to execute prior to executing the function or after
the function has completed.

The wrapped function may be executed in block 818 and
performance data may be collected in block 820. Snapshot
instances may be collected in block 822.

When another function is to be executed in block 824, the
process may return to block 804. When all the functions
have been executed in block 824, the application may end in
block 826.

FIG. 9 is a flowchart illustration of an embodiment 900
showing a lifecycle of a snapshot. Embodiment 900 shows
snapshot collection and snapshot use, and shows various use
scenarios for snapshots.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 900 shows a simplified method for snapshot
instance collection and viewing. In one use case for the
method, a programmer may create one or more snapshot
definitions which may be run against an application. While
the application executes, snapshots may be collected. At a
later time, the programmer may use a debug viewer to
browse each snapshot instance to determine what may have
been happening with the application at the time of each
snapshot instance.

In block 902, snapshot definitions may be identified. As
an application executes in block 904 and a snapshot condi-
tion is met in block 906, the program state or a subset of
program state may be collected in block 908. The snapshot
instance may be stored in block 910. If execution is ongoing
in block 912, the process may return to block 904. When
execution ends in block 912, the application may end in
block 914.

The steps from 902 through 914 may reflect the data
gathering phase, where snapshot instances may be collected
during application execution. The following steps may
reflect the activities that may be performed to view and
browse the information contained in the snapshot instance.

A debugging interface may be launched in block 916. One
example of such an interface may be found in embodiment
400, although other configurations may also be used.

A snapshot instance may be selected in block 918. The
snapshot data may be viewed and browsed in block 920. In
embodiments where performance data are also available,
performance data may be viewed and browsed in block 922.

The debug interface may include a code viewer and code
editor. When an editor is present, the programmer may
update or modify the source code using the editor in block
924.

If another snapshot is selected to be viewed in block 926,
the process may loop back to block 918. When the user has
completed viewing snapshots in block 926 and the user
made changes to the application, the application may be
compiled in block 928 and the process may loop back to
block 904.

FIG. 10 is a flowchart illustration of an embodiment 1000
showing a method for viewing a snapshot instance. Embodi-
ment 1000 may be a simplified example of some of the

US 9,465,721 B2

19

operations of a debug interface that may display and interact
with a snapshot instance. The example of embodiment 1000
illustrates an example of a debug interface where source
code may be retrieved from a repository that may be separate
from the snapshot instance. In other embodiments, the

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 1000 is a simplified example of a process
that may be performed by a debug interface. The process of
embodiment 1000 is quite linear, however many of the
interactive features of a debug interface may happen in
different sequences or may occur in parallel with other
operations.

In block 1002, a debug interface may be launched.

A snapshot instance may be retrieved in block 1004. From
the snapshot instance, links or pointers to the source code
may be identified in block 1006. The source code may be
retrieved from a source code repository in block 1008.

A view of the snapshot may be selected in block 1010. In
many cases, the code associated with the deepest level of the
call stack may be selected as the first view. The source code
associated with the view may be displayed in block 1012.
Local variables may be displayed in block 1014 and global
variables may be displayed in block 1016. The call stack
may be displayed in block 1018. At this point, a user may be
able to browse through the data.

The user may identify a variable to add to the snapshot
definition in block 1020 and may modify the condition under
which the snapshot may be taken in block 1022. The changes
in blocks 1020 and 1022 may update the snapshot definition.
The updated snapshot definition may be deployed to cause
future snapshot instances to be collected.

If another view of the snapshot were desired in block
1024, the process may return to block 1010. Another view of
the snapshot may be requested when a user selects another
frame on a call stack, for example.

After the views may be analyzed in block 1024, the
updated snapshot definition may be stored in block 1026.
When additional snapshots may be viewed in block 1028,
the process may return to block 1004, otherwise the process
may end in block 1030.

The foregoing description of the subject matter has been
presented for purposes of illustration and description. It is
not intended to be exhaustive or to limit the subject matter
to the precise form disclosed, and other modifications and
variations may be possible in light of the above teachings.
The embodiment was chosen and described in order to best
explain the principles of the invention and its practical
application to thereby enable others skilled in the art to best
utilize the invention in various embodiments and various
modifications as are suited to the particular use contem-
plated. It is intended that the appended claims be construed
to include other alternative embodiments except insofar as
limited by the prior art.

What is claimed is:

1. A method, implemented at a computer system that
includes one or more processors, for collecting performance
data and snapshot data of an application executing on the
one or more processors, the method comprising:

during execution of an application;

20

25

40

45

60

20

collecting performance data comprising one or more of
counters, processing times, and data throughput;

identifying a snapshot definition, comprising (i) an
event definition defining a condition under which
execution of the application is to be paused and a
snapshot of the paused application is to be taken, and
(i) a dataset definition defining a plurality of snap-
shot data items, different from the performance data,
that are to be collected as part of the snapshot and
that define an execution state of the application when
satisfaction of the condition occurred, the plurality of
snapshot data items including one or more of a call
stack and one or more variable values; and

identifying satisfaction of the condition;

based at least on identifying satisfaction of the condition,

pausing both execution of the application and collec-
tion of performance data;

while execution of the application is paused, collecting

the plurality of snapshot data items according to the
dataset definition;

subsequent to collecting the plurality of snapshot data

items, resuming both execution of the application and
collection of the performance data;
assigning a first security policy to the collected perfor-
mance data and a second security policy to the col-
lected plurality of snapshot data items, the first security
policy including a first indication that the collected
performance data should be unencrypted and the sec-
ond security policy including a second indication that
the collected plurality of snapshot items should be
encrypted;
storing the collected performance data within a perfor-
mance database in an unencrypted format based on the
first indication of the first security policy; and

storing the collected plurality of snapshot data items
within a snapshot database in an encrypted format
based on an the second indication of the second secu-
rity policy.

2. The method of claim 1, wherein the snapshot definition
comprises executable code, the executable code defining at
least one parameter to be collected.

3. The method of claim 2, wherein the executable code
also defines the condition.

4. The method of claim 2, wherein the executable code is
executed in a thread different from the application.

5. The method of claim 1, wherein the condition is defined
by a function call within the application.

6. The method of claim 1, further comprising adding the
function call to the application prior to compilation.

7. The method of claim 1, further comprising adding the
function call to the application after compilation.

8. The method of claim 1, wherein the condition com-
prises an event descriptor.

9. The method of claim 1, wherein collecting the plurality
of snapshot data items according to the dataset definition
comprises traversing a call stack and gathering at least one
local variable at one frame in the call stack.

10. A computer program product comprising one or more
hardware storage devices having stored thereon computer-
executable instructions that are executable by at least one
processor of a computer system to configure the computer
system to collect performance data and snapshot data of an
application executing on the at least one processor, the
computer-executable instructions including instructions that
configure the computer system to perform at least the
following:

during execution of an application:

US 9,465,721 B2

21

collect performance data comprising one or more of
counters, processing times, and data throughput;
identify a snapshot definition comprising (i) an event
definition defining a condition under which execu-
tion of the application is to be paused and a snapshot
of the paused application is to be taken, and (i) a
dataset definition defining a plurality of snapshot
data items, different from the performance data, that
are to be collected as part of the snapshot and that
define an execution state of the application when
satisfaction of the condition occurred, the plurality of
snapshot data items including one or more of a call
stack and one or more variable values; and
identify satisfaction of the condition for collecting said
snapshot;
based at least on identifying satisfaction of the condition,
pause both execution of the application and collection
of performance data;
while execution of the application is paused, collect the
plurality of snapshot data items according to the dataset
definition;
subsequent to collecting the plurality of snapshot data
items, resume both execution of the application and
collection of performance data
assign a first security policy to the collected performance
data and a second security policy to the collected
plurality of snapshot data items, the first security policy
including a first indication that the collected perfor-
mance data should be unencrypted and the second
security policy including a second indication that the
collected plurality of snapshot items should be
encrypted;
store the collected performance data within a performance
database in an unencrypted format based on the first
indication of the first security policy; and
store the collected plurality of snapshot data items within
a snapshot database in an encrypted format based on an
the second indication of the second security policy.
11. The computer program product of claim 10, wherein
the security policy also includes at least one of:
user access restrictions;
network configuration; and
physical security.
12. A computer system comprising:
at least one processor; and
one or more computer readable media having stored
thereon computer-executable instructions that are
executable by the at least one processor to collect
performance data and snapshot data of an application
executing on the at least one processor, the computer-
executable instructions including instructions that are
executable to configure the computer system to perform
at least the following:
during execution of an application:
collect performance data comprising one or more of
counters, processing times, and data throughput;
identify a snapshot definition comprising (i) an event
definition defining a condition under which execu-
tion of the application is to be paused and a
snapshot of the paused application is to be taken,
and (ii) a dataset definition defining a plurality of
snapshot data items, different from the perfor-
mance data, that are to be collected as part of the
snapshot and that define an execution state of the
application when satisfaction of the condition

15

20

30

35

40

45

55

22

occurred, the plurality of snapshot data items
including one or more of a call stack and one or
more variable values; and
identify satisfaction of the condition;
based at least on identifying satisfaction of the condi-
tion, pause both execution of the application and
collection of performance data;
while execution of the application is paused, collect the
plurality of snapshot data items according to the
dataset definition;
subsequent to collecting the plurality of snapshot data
items, resume both execution of the application and
collection of the performance data;
assign a first security policy to the collected perfor-
mance data and a second security policy to the
collected plurality of snapshot data items, the first
security policy including a first indication that the
collected performance data should be unencrypted
and the second security policy including a second
indication that the collected plurality of snapshot
items should be encrypted;
store the collected performance data within a perfor-
mance database in an unencrypted format based on
the first indication of the first security policy; and
store the collected plurality of snapshot data items
within a snapshot database in an encrypted format
based on an the second indication of the second
security policy.

13. The computer system of claim 12, wherein the con-
dition is defined by a function call within the application.

14. The computer system of claim 13, wherein manager
the computer system is also configured to add the function
call to said application.

15. The computer system of claim 14, wherein the com-
puter system is also configured to add the function call prior
to compilation.

16. The computer system of claim 14, wherein the com-
puter system is also configured to add the function call after
compilation.

17. The computer system of claim 14, wherein the com-
puter system is also configured to add the function call
within a debugging environment.

18. The computer system of claim 12, wherein the con-
dition comprises an event descriptor.

19. The computer system of claim 18, wherein the event
descriptor comprises a descriptor for an input/output event.

20. The computer system of claim 19, wherein the
descriptor comprises a device state descriptor.

21. The computer system of claim 18, wherein the event
descriptor comprises an expression, the expression compris-
ing a reference to a variable within the application.

22. The computer system of claim 21, wherein the vari-
able comprises a local variable.

23. The computer system of claim 12, wherein the com-
puter system is also configured to gather the plurality of
snapshot data items by traversing a call stack and gathering
at least one local variable at one frame in the call stack.

24. The computer system of claim 12, wherein the envi-
ronment within which the application is executing comprises
a virtual machine.

25. The computer system of claim 12, wherein the envi-
ronment within which the application is executing comprises
an operating system.

